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ABSTRACT 

It is shown that  for every 1 _~ s _~ n, the probability that  the s- th 

largest eigenvalue of a random symmetric  n-by-n matr ix  with independent 

random entries of absolute value at most 1 deviates from its median by 

more than t is at most 4e -t2/32s2. The main ingredient in the proof is 

Talagrand's Inequality for concentration of measure in product  spaces. 
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1. I n t r o d u c t i o n  

In this short paper we consider the eigenvalues of random symmetric matrices 

whose diagonal and upper diagonal entries are independent real random variables. 

Our goal is to study the concentration of the largest eigenvalues. For a symmetric 

real n-by-n matrix A, let AI(A) ~_ A2(A) ~_ . . .  ~ An(A) be its eigenvalues. 

There are numerous papers dealing with eigenvalues of random symmetric ma- 

trices. The most celebrated result in this field is probably the so-called Semicircle 

Law due to Wigner ([10], [11]) describing the limiting behavior of the bulk of the 

spectrum of random symmetric matrices under certain regularity assumptions. 

THE SEMICIRCLE LAW: For 1 < i < j _< n let aij be real valued independent 

random variables satisfying: 

1. The laws of distributions of {aij} are symmetric; 

2. E[a2j] = ¼, l < i < j <_ n, E[a~i ] <_ c ,  l < i < n; 

3. < (Cm) TM, for all m > 1, 

where C > 0 is an absolute constant. For i < j set a j i  ---- a i j .  Let An denote 

the random matrix (a{j)~. Finally, denote by Wn(x) the number of eigenvalues 

of An not larger than x, divided by n. Then 

lim Wn(xx/n) = W(x) ,  
n --~ o o  

in distribution, where W(x)  = 0 i f  x <_ -1 ,  W(x )  = 1 if  x > 1 and W(x )  = 
2 j_~l(1 _ x2)l/2dx i f - 1  < x < 1. 

Many extensions and ramifications of the Semicircle Law have been proven 

since then. It is important to observe that the Semicircle Law provides very lim- 

ited information about the asymptotic behavior of any particular (say, the first) 

eigenvalue. There are, however, quite a few results describing the asymptotic dis- 

tribution of the first few eigenvalues of random symmetric matrices. For example, 

Tracy and Widom [8], [9] found, for any fixed k > 1, the limiting distribution 

of the first k eigenvalues of the so-called Gaussian Orthogonal Ensemble (GOE), 

corresponding to the case when the off-diagonal entries of the random symmetric 

matrix A are independent normally distributed random variables with parame- 

ters 0 and 1/2. Very recently, Soshnikov [6] generalized their result for a general 

Wigner Ensemble, i.e., for a random symmetric matrix meeting the conditions of 

the Semicircle Law. Ffiredi and Koml6s [3] proved that if all off-diagonal entries 

aij , , i < j of A have the same first moment # > 0 and the same second moment 

a 2, while the expectation of all diagonal entries aii is E[aii] = v, then, assuming 

that  M1 entries of A are uniformly bounded by an absolute constant K > 0, the 
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first eigenvalue of A has asymptotically a normal distribution with expectation 

(n - 1)# + u + 52/# and variance 2(f 2. 

As we have mentioned already, our main goal here is to obtain concentration 

results for the eigenvalues of random symmetric matrices. Thus, instead of trying 

to calculate the limiting distribution of a particular eigenvalue we will rather be 

interested in bounding its tails. Of course, knowledge of the limiting distribution 

of a random variable (an eigenvalue, in our context) provides certain information 

about the decay of its tails. Sometimes, however, concentration results can be 

derived by applying powerful general tools dealing with concentration of measure 

to the particular setting of eigenvalues of random symmetric matrices. A detailed 

discussion of the later approach can be found in a recent survey of Davidson and 

Szarek [2]. 

Here we consider the following quite general model of random symmetric ma- 

trices. For 1 < i < j <_ n, let aij be independent, real random variables with 

absolute value at most 1. Define aji = aij for all admissible i , j ,  and let A be the 

n-by-n matrix ( a i j ) n x n .  Our main result is as follows. 

THEOREM 1: For every positive integer 1 < s < n, the probability that As (A) 
deviates from its median by more than t is at m o s t  4e  - t2 /32s2  . The same estimate 

holds for the probability that An-,+l (A) deviates from its median by more than 

t .  

We wish to stress that our setting, though being incomparable with some other 

previously studied ensembles, like the Gaussian Orthogonal Ensemble, is very 

general and can potentially be applied to many particular cases. The proof is 

based oil the so-called Talagrand Inequality ([7], cf. also [1], Chapter 7) and thus 

certainly fits the above-mentioned framework of deriving concentration results 

for eigenvalues from the general measure concentration considerations. 

The rest of the paper is organized as follows. In the next section we prove our 

main result, Theorem 1. Section 3 is devoted to a discussion of related results 

and open problems. 

The main result of the paper for the first eigenvalue (i.e., the assertion of 

Theorem 1 for the special case s = 1) was first presented in [5], where it was used 

to design approximation algorithms for coloring and independent set problems, 

running in expected polynomial time over the space of random graphs G(n, p). 

2. The proof 

Talagrand's Inequality is the following powerful large deviation result for product 

spaces. 
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THEOREM 2 ([7]): Let  ~1, ~2, . . . ,  ~m be probabil i ty  spaces, and let ~ denote  

their product  space. Let  .4 and B be two subsets off~ and suppose that  for each 

B --- (B1 , . . . ,  B,~) E B there is a real vector a = (al ,  a2 . . . .  , am)  such that  for 

every  A -- (A1, . . . ,  Am)  E A the inequality 

z 
i:Ai•Bi i----1 

holds. Then 

Pr[A] Pr[B] <_ e -t2/4. 

Talagrand's Inequality has already found a large number of applications in 

diverse areas. In particular, it has been used by Guionnet and Zeitouni [4] to 

derive concentration inequalities for the spectral measure of random matrices. 

In their paper, Guionnet and Zeitouni mention (without the detailed proof) the 

possibility of using similar tools to obtain concentration results for the spectral 

radius of random matrices. 
n+l We now apply Talagrand's Inequality to prove Theorem 1. Put  m = ( 2 ) and 

consider the product space f~ of the entries aij,  1 < i < j ~_ n. Fix a positive 

integer s, and let M, t be real numbers, where t > 0. Let A be the set of all 

matrices A in our space for which As(A) ~ M and let B denote the set of all 

matrices B for which ,~(B)  >_ M + t .  By slightly abusing the notation we identify 

each member of A = (aij) C .4 U B with the vector of ~ consisting of its entries 

(aij) for 1 < i < j _~ n. 

Fix a vector B = (bi j)  E ]3. Let v0), v (2) . . . .  , v (s) be the eigenvectors of the s 

largest eigenvalues of (the matrix) B, where the/2-norm of each v (p) is 1 and the 

vectors are orthogonal. Suppose v (p) = (v~ p), v ?  ) . . . .  , v (p)) and define a vector 

O~ ~-  ( a i j ) l ~ _ i ~ _ j ~  n of length m as follows. 

= X- ' (v (P)~2  a i i  ~ . . ~ \  i / 

p=l 

for l < i < n  

and 

CLAIM 1: 

I 8 
a i j  : 2 ~ "  (v(P)) 2 z_ .~  i J , 

p= l  

8 

X-'iv(p))2 

p----1 
for l <_i < j <_n. 

2 ~ 2s  2. 
E a i  j _ 

l<i<j<~ 
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Proof'. By definition, 

a~ = (v~P)) 2 + 4  ( v ~ )  (v 
l<i<_j<_n i : 1  = l<_i<j<n -- 

i ~ l  p-~l / -- "= 

where here we used the fact that each V (p) is a unit vector. 1 

CLAIM 2: F o r  e v e r y  A E A, 

E ~J  >- t/2. 
l<_i<_j<n;alj~bij 

8 Proof'. Fix A C .4. Let u = ~--]~p=l CP v(p)  b e  a unit vector in the span of the 

vectors v (p) which is orthogonal to the eigenvectors of the largest s -  1 eigenvalues 
of A. Then ~p=lCp 2 = 1 and u tdu  <_ As(A) <_ M,  whereas u tBu  >_ A~(B) >_ 
M + t. Recall that  all entries of both A and B are bounded in their absolute 

values by 1, implying Ibij - a i j l  <_ 2 for all 1 < i , j  <_ n. It follows that i f X  is 

the set of all (ordered) pairs i j  with 1 < i, j _< n for which aij ~ bij, then 

8 8 

t < u t (B - A)u = E (bij - aij) E cpv~p) v ~  C V (p) -- L . ~ P j  
i j E X  p----1 p= l  

8 8 

_< 2 ~ ~ c~v} p) z_.. ~ v (p) 
i j E X  p=l  

i j E X  -- p=l  

(by Cauchy-Schwartz) 

E O~iJ 2 
l<i<_j<_n, a~j~=blj 

as needed. I 

By the above two claims, and by Theorem 2, for every M and every t > 0 

(1) Pr[A~(d) < M] Pr[A~(B) >_ M + t] <_ e -t~/3282. 

If M is the median of As(A) then, by definition, Pr[~(A)  < M] > 1/2, implying 

that 
Pr[A~(A) > M + t)] ~ 2e -t2/32s2. 
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Similarly, by applying (1) with M + t being the median of As(A) we conclude 

that the probability that Ae (A) is smaller than its median minus t is bounded by 

the same quantity. This completes the proof of Theorem 1 for )% (A). The proof 

for ,~n-s+l(A) is analogous. | 

3. C o n c l u d i n g  r e m a r k s  

• In many cases concentration results are presented by giving bounds for the 

deviation of a random variable from its expectation, rather than its median 

as in our Theorem 1. Our result, however, easily enables us to show that  

the expectation and the median of eigenvalues are very close. Indeed, recall 

that for any non-negative valued random variable X, 

E[X] = Pr[X > tJdt. 

Denote by ms the median of the s-th eigenvalue of A. By Theorem 1: 

fo [ElAn(A)] - m~[ < E[IA~(A ) - m~[] = Pr[[A~ - m~[ > t]dt 

<_ 4e-t2 /a2s2dt = 8 v / ~ s .  

Thus, the expectation of h~ (A) and its median are only O(s) apart. There- 

fore, for all t > >  s we get 

Pr[[A~(A) - E[A~(A)][ _ t] < e -('-°(1))t~/32~. 

• Our estimate from Theorem 1 is sharp, up to an absolute factor in the 

exponent, for the deviation of A1. Consider the following random symmetric 

matrix A = (aij)~. For each 1 <_ i < j ,  aij takes value 1 with probability 

1/2 and value 0 with probability 1/2; all diagonal entries aii are 0; set also 

aji = aij for 1 _< i < j < n. (In fact, the obtained random matrix is the 

adjacency matrix of the binomial random graph G(n, 1/2).) By a result of 

Ffiredi and Koml6s [3] the expected value of A1 = hi(A) is n/2 + o(1). By 

the previous remark, the median of hi  and its expectation differ by at most 

a constant. On the other hand, h i is at least the average number of ones 

in a row (the average degree of the graph G(n, 1/2)), and as this average 

degree is 2/n times a binomial random variable with parameters (~) and 

1/2, it follows that the probability that A1 exceeds its median by t is at 

least ~(e-°(t2)).  
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• Note that for the adjacency matrix of a random graph the entries of our 

matrix are in the range [0, 1]. In this case the estimate in Theorem 1 can 

be improved to 4e -?/s~2,  as each of the quantities Ib~j - aij I in the proof 

of Claim 2 can be bounded by 1 (instead of bounding it by 2, as done in 

the present proof.) 

• In certain cases, our concentration result can be combined with additional 

considerations to provide bounds for the expectations of eigenvalues of ran- 

dom symmetric matrices. Here is one example. 

PROPOSITION 3: Let  aij, 1 <_ i <_ j <_ n be independent random variable 

bounded by 1 in absolute values. Assume that  for all i < i, the aij have a 

common expectation 0 and a common variance a 2. Then 

E b l ( A ) ]  > 2an 1/2 - O(~ log 1/~ n). 

Consequently, with probabil i ty  tending to 1, 

AI(A) > 2c~n 1/2 - O(a log  1/2 n). 

Proo~ Since Al(CA) = cAI(A) for every scalar c, we may and will assume that 

c~ = 1/2. Furthermore, set # = n 1/2, k = [ttlogl/2 n] and x -- alogl /2  n, where 

a is a positive constant chosen so that the following two inequalities hold: 

(2)  k/kh/2 > - x/27, 

(3) E e 2 t l ° g l / ~ - ? / 4 °  = o(1). 

t--~--a l og l /2  n 

Without loss of generality, we assume that  k is an even integer and let X be 

the trace of A k. It is trivial that  E[X] <_ nE[Alk]. On the other hand, a simple 

counting argmnent (see [3]) shows that  

1 
E[X] > ( k / 2 ) + l  k /2  a n ( n - 1 ) . . . ( n -  (k /2))  

> -- k 312 \ 2 ]  n(#2 --I~l°gll2n)k/2 >- npk/k5/2" 

It follows that  

(4) >_ 

Assume, for contradiction, that E ( A J  _< # - x .  It follows from this assumption 

that 

(5) E[Alk]< (#--x/2)k+ E (P--x+(t+l)) kPr[A, ~ # - x + t ] .  
t=x/2 
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By Theorem 1, Pr(A1 > # - x + t) _< e -t2/4° for all t > x/2. Thus (2), (4) and 

(5) imply 

O O  

(6) E (#  - x + (t + 1))ke -t~/4° > i tk /k5/2  -- (it -- x / 2 )  k >_ (it -- x/2) k. 
t-=x~2 

Since (it - x + (t + 1))k/(it - x / 2 )  k < e ( l+°O))tk/"  = e (l+°(i))tl°gl/~ n, (3) and 

(6) imply a contradiction, and this completes the proof. | 

This improves the error term in the bound AI(A) >_ 2 a n  1/2 - O ( n  1/3 logn), 

stated by Fiiredi and Koml6s in [3]. 

• The concentration provided by Theorem 1 for As(A) for larger values of 

s is weaker than that  provided for s = 1. It seems this is only a feature 

of the proof, as it seems plausible to suspect that in fact each As is as 

concentrated around its median as is A1, and in certain situations (like 

symmetric matrices with independent, identically distributed entries) A2 (A) 

might be even more concentrated around its median than A1. 

• Theorem 1 is obtained under very general assumptions on the distribution 

of the entries of a symmetric matrix A. Still, it would be very desirable to 

generalize its assertion even further, in particular, dropping or weakening 

the restrictive assumption about the uniform boundness of the entries of 

A. This task, however, may require the application of other tools, as the 

Talagrand Inequality appears to be suited for the case of bounded random 

variables. 

• Finally, it would be interesting to find further applications of our concentra- 

tion results in algorithmic problems on graphs. The ability to compute the 

eigenvalues of a graph in polynomial time combined with an understanding 

of the potentially rich structural information encoded by the eigenvalues is 

likely to provide a basis for new algorithmic results exploiting the eigen- 

values of graphs and their concentration. 
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